欧美理论视频_国产亚洲美州欧州综合国_亚洲素人一区二区_欧美一区二区三区免费看

聯系我們

適配器中EMI抑制措施提出新參考建議

網站首頁 » 新聞 » 公司動態 » 適配器中EMI抑制措施提出新參考建議

適配器中EMI抑制措施提出新參考建議

適配器電磁干擾的產生機理
電磁兼容EMC
目前,許多大學及科研單位都進行了適配器EMI(ElectromagneticInterference)的研究,他們中有些從EMI產生的機理出發,有些從EMI產生的影響出發,都提出了許多實用有價值的方案。這里分析與比較了幾種有效的方案,并為適配器EMI的抑制措施提出新的參考建議。
適配器電磁干擾的產生機理
適配器產生的干擾,按噪聲干擾源種類來分,可分為尖峰干擾和諧波干擾兩種,若按耦合通路來分,可分為傳導干擾和輻射干擾兩種。現在按噪聲干擾源來分別說明:

1、二極管的反向恢復時間引起的干擾
高頻整流回路中的整流二極管正向導通時有較大的正向電流流過,在其受反偏電壓而轉向截止時,由于PN結中有較多的載流子積累,因而在載流子消失之前的一段時間里,電流會反向流動,致使載流子消失的反向恢復電流急劇減少而發生很大的電流變化(di/dt)。

2、開關管工作時產生的諧波干擾
功率開關管在導通時流過較大的脈沖電流。例如正激型、推挽型和橋式變換器的輸入電流波形在阻性負載時近似為矩形波,其中含有豐富的高次諧波分量。當采用零電流、零電壓開關時,這種諧波干擾將會很小。另外,功率開關管在截止期間,高頻變壓器繞組漏感引起的電流突變,也會產生尖峰干擾。

3、交流輸入回路產生的干擾
無工頻變壓器的適配器輸入端整流管在反向恢復期間會引起高頻衰減振蕩產生干擾。
適配器產生的尖峰干擾和諧波干擾能量,通過適配器的輸入輸出線傳播出去而形成的干擾稱之為傳導干擾;而諧波和寄生振蕩的能量,通過輸入輸出線傳播時,都會在空間產生電場和磁場。這種通過電磁輻射產生的干擾稱為輻射干擾。

4、其他原因
元器件的寄生參數,12伏電源適配器的原理圖設計不夠,印刷線路板(PCB)走線通常采用手工布置,具有很大的隨意性,PCB的近場干擾大,并且印刷板上器件的安裝、放置,以及方位的不合理都會造成EMI干擾。

適配器EMI的特點
作為工作于開關狀態的能量轉換裝置,適配器的電壓、電流變化率很高,產生的干擾強度較大;干擾源主要集中在功率開關期間以及與之相連的散熱器和高平變壓器,相對于數字電路干擾源的位置較為清楚;開關頻率不高(從幾十千赫和數兆赫茲),主要的干擾形式是傳導干擾和近場干擾;而印刷線路板(PCB)走線通常采用手工布線,具有更大的隨意性,這增加了PCB分布參數的提取和近場干擾估計的難度.

EMI測試技術
目前診斷差模共模干擾的三種方法:射頻電流探頭、差模抑制網絡、噪聲分離網絡。用射頻電流探頭是測量差模共模干擾較簡單的方法,但測量結果與標準限值比較要經過較復雜的換算。差模抑制網絡結構簡單(見圖1),測量結果可直接與標準限值比較,但只能測量共模干擾。噪聲分離網絡是較理想的方法,但其關鍵部件變壓器的制造要求很高。
適配器中EMI抑制措施提出新參考建議
目前抑制干擾的幾種措施
形成電磁干擾的三要素是干擾源、傳播途徑和受擾設備。因而,抑制電磁干擾也應該從這三方面著手。首先應該抑制干擾源,直接消除干擾原因;其次是消除干擾源和受擾設備之間的耦合和輻射,切斷電磁干擾的傳播途徑(見圖2);第三是提高受擾設備的抗擾能力,減低其對噪聲的敏感度。目前抑制干擾的幾種措施基本上都是用切斷電磁干擾源和受擾設備之間的耦合通道,它們確是行之有效的辦法。常用的方法是屏蔽、接地和濾波。

采用屏蔽技術可以有效地抑制適配器的電磁輻射干擾。例如,功率開關管和輸出二極管通常有較大的功率損耗,為了散熱往往需要安裝散熱器或直接安裝在電源底板上。器件安裝時需要導熱性能好的絕緣片進行絕緣,這就使器件與底板和散熱器之間產生了分布電容,適配器的底板是交流電源的地線,因而通過器件與底板之間的分布電容將電磁干擾耦合到交流輸入端產生共模干擾,解決這個問題的辦法是采用兩層絕緣片之間夾一層屏蔽片,并把屏蔽片接到直流地上,割斷了射頻干擾向輸入電網傳播的途徑。為了抑制適配器產生的輻射,電磁干擾對其他電子設備的影響,可完全按照對磁場屏蔽的方法來加工屏蔽罩,然后將整個屏蔽罩與系統的機殼和地連接為一體,就能對電磁場進行有效的屏蔽。

電源某些部分與大地相連可以起到抑制干擾的作用。例如,靜電屏蔽層接地可以抑制變化電場的干擾;電磁屏蔽用的導體原則上可以不接地,但不接地的屏蔽導體時常增強靜電耦合而產生所謂“負靜電屏蔽”效應,所以仍以接地為好,這樣使電磁屏蔽能同時發揮靜電屏蔽的作用。電路的公共參考點與大地相連,可為信號回路提供穩定的參考電位。因此,系統中的安全保護地線、屏蔽接地線和公共參考地線各自形成接地母線后,后面都與大地相連.

在電路系統設計中應遵循“一點接地”的原則,如果形成多點接地,會出現閉合的接地環路,當磁力線穿過該回路時將產生磁感應噪聲,實際上很難實現“一點接地”。因此,為降低接地阻抗,消除分布電容的影響而采取平面式或多點接地,利用一個導電平面(底板或多層印制板電路的導電平面層等)作為參考地,需要接地的各部分就近接到該參考地上。為進一步減小接地回路的壓降,可用旁路電容減少返回電流的幅值。在低頻和高頻共存的電路系統中,應分別將低頻電路、高頻電路、功率電路的地線單獨連接后,再連接到公共參考點上。
濾波是抑制傳導干擾的一種很好的辦法。例如,在電源輸入端接上濾波器,可以抑制適配器產生并向電網反饋的干擾,也可以抑制來自電網的噪聲對電源本身的侵害。在濾波電路中,還采用很多專用的濾波元件,如穿心電容器、三端電容器、鐵氧體磁環,它們能夠改善電路的濾波特性。恰當地設計或選擇濾波器,并正確地安裝和使用濾波器,是抗干擾技術的重要組成部分。

適配器中EMI抑制措施提出新參考建議

EMI濾波技術是一種抑制尖脈沖干擾的有效措施,可以濾除多種原因產生的傳導干擾。圖3是一種由電容、電感組成的EMI濾波器,接在適配器的輸入端。電路中,C1、C5是高頻旁路電容,用于濾除兩輸入電源線間的差模干擾;L1與C2、C4;L2與C3、C4組成共模干擾濾波環節,用于濾除電源線與地之間非對稱的共模干擾;L3、L4的初次級匝數相等、極性相反,交流電流在磁芯中產生的磁通相反,因而可有效地抑制共模干擾。測試表明,只要適當選擇元器件的參數,便可較好地抑制適配器產生的傳導干擾。

現有的抑制措施大多從消除干擾源和受擾設備之間的耦合和輻射,切斷電磁干擾的傳播途徑出發,這確是抑制干擾的一種行之有效的辦法,但很少有人涉及直接控制干擾源,消除干擾,或提高受擾設備的抗擾能力,殊不知后者還有許多發展的空間。

改進措施的建議
目前從電磁干擾的傳播途徑出發來抑制干擾,已漸進成熟。我們的視點要回到5v1a電源適配器器件本身來。從多年的工作實踐來看,在電路方面要注意以下幾點:

(1)印制板布局時,要將模擬電路區和數字電路區合理地分開,電源和地線單獨引出,電源供給處匯集到一點;PCB布線時,高頻數字信號線要用短線,主要信號線較好集中在PCB板中心,同時電源線盡可能遠離高頻數字信號線或用地線隔開。其次,可以根據耦合系數來布線,盡量減少干擾耦合。

適配器中EMI抑制措施提出新參考建議

(2)印制板的電源線和地線印制條盡可能寬,以減小線阻抗,從而減小公共阻抗引起的干擾噪聲。
(3)器件多選用貼片元件和盡可能縮短元件的引腳長度,以減小元件分布電感的影響。
(4)在Vdd及Vcc電源端盡可能靠近器件接入濾波電容,以縮短開關電流的流通途徑,如用10μF鋁電解和01μF電容并聯接在電源腳上。對于高速數字IC的電源端可以用鉭電解電容代替鋁電解電容,因為鉭電解的對地阻抗比鋁電解小得多。

產生適配器電磁干擾的因素還很多,抑制電磁干擾還有大量的工作。全面抑制適配器的各種噪聲會使適配器得到更廣泛的應用。

電源適配器

電源產品歐洲能效要求解析
碳性電池/堿性電池/鋰鐵電池有哪些區別
開關電源抗干擾、EMC要求
電動車充電器電源插頭接觸不良怎么辦
LED驅動電源的正確選取方法及器件配置


文章轉載自網絡,如有侵權,請聯系刪除。
| 發布時間:2018.11.05    來源:適配器廠家
上一個:電阻器下一個:電源適配器電磁干擾抑制技術及設計方法

東莞市玖琪實業有限公司專業生產:電源適配器、充電器、LED驅動電源、車載充電器、開關電源等....

欧美理论视频_国产亚洲美州欧州综合国_亚洲素人一区二区_欧美一区二区三区免费看
日韩欧美不卡在线观看视频| 久久欧美一区二区| 91精品婷婷国产综合久久竹菊| 国产精品美女久久久久久久| 成人精品gif动图一区| 欧美高清在线视频| 成人激情综合网站| 国产精品激情偷乱一区二区∴| 91丝袜国产在线播放| 夜夜嗨av一区二区三区中文字幕| 91论坛在线播放| 亚洲电影一区二区三区| 欧美一区二区福利视频| 国产精品综合一区二区三区| 国产精品视频第一区| 在线精品观看国产| 乱一区二区av| 最新中文字幕一区二区三区| 日本道精品一区二区三区| 秋霞午夜av一区二区三区| 2023国产精品| 欧美在线看片a免费观看| 狠狠色狠狠色综合日日91app| 国产视频一区二区三区在线观看| 色综合天天视频在线观看| 日本网站在线观看一区二区三区| 久久网站最新地址| 色8久久精品久久久久久蜜| 免费久久精品视频| 亚洲欧美一区二区在线观看| 日韩亚洲欧美一区| www.99精品| 久久成人久久爱| 夜夜精品浪潮av一区二区三区| 日韩美女天天操| 欧美色爱综合网| 成人avav在线| 久久爱www久久做| 一区二区三区在线视频免费| 国产无人区一区二区三区| 91精品国产综合久久久久久久久久| 99视频热这里只有精品免费| 精品一区二区在线看| 一区二区免费视频| 亚洲国产精品激情在线观看| 日韩一区二区在线观看| 欧洲在线/亚洲| 一本大道av伊人久久综合| 国产一区二区三区免费看 | 亚洲自拍偷拍图区| 国产欧美日韩视频一区二区| 日韩视频一区二区| 欧美私模裸体表演在线观看| 91色婷婷久久久久合中文| 国产精品1区二区.| 精品一区二区三区欧美| 麻豆freexxxx性91精品| 三级精品在线观看| 亚洲国产一区在线观看| 一区二区三区欧美| 一区二区三区精品视频在线| 亚洲日本va在线观看| 国产精品欧美久久久久无广告| 国产视频视频一区| 欧美激情中文不卡| 国产精品免费久久久久| 国产精品素人视频| 国产欧美日韩在线| 国产精品欧美久久久久一区二区| 久久日韩精品一区二区五区| 精品成人佐山爱一区二区| 亚洲精品一区二区三区影院| 久久综合久久鬼色| 欧美国产一区视频在线观看| 国产精品成人午夜| 亚洲美女在线一区| 午夜精品免费在线观看| 男男gaygay亚洲| 国内成人精品2018免费看| 国产一区二区在线影院| 高清国产一区二区三区| 91视频一区二区三区| 欧美日韩免费不卡视频一区二区三区| 欧美日韩成人综合| 精品99一区二区| 国产精品天干天干在线综合| 一区二区久久久| 久久激情综合网| 99久久99久久综合| 欧美日韩一级二级| 精品国精品自拍自在线| 国产精品久久午夜| 亚洲成人三级小说| 国内成+人亚洲+欧美+综合在线| 成人综合婷婷国产精品久久免费| 色综合久久六月婷婷中文字幕| 欧美电影在线免费观看| 亚洲摸摸操操av| 一区二区三区在线免费观看| 日韩精品欧美成人高清一区二区| 国产精选一区二区三区| 在线区一区二视频| 欧美一级国产精品| 亚洲欧美自拍偷拍色图| 免费成人小视频| 99精品国产热久久91蜜凸| 制服丝袜成人动漫| 亚洲视频一区在线观看| 老司机免费视频一区二区三区| 成人18视频在线播放| 欧美一级理论片| 日韩美女视频19| 国产在线麻豆精品观看| 欧美亚洲高清一区二区三区不卡| 国产亚洲欧洲一区高清在线观看| 亚洲午夜av在线| 99久久精品免费看| 欧美精品一区二区三区蜜臀| 一区二区激情小说| 成人av在线播放网站| 日韩精品综合一本久道在线视频| 亚洲三级电影网站| 国产99久久久国产精品潘金网站| 欧美一区二区三区精品| 亚洲蜜臀av乱码久久精品蜜桃| 国产一区二区三区在线看麻豆| 91久久精品一区二区三| 国产精品黄色在线观看| 国产a精品视频| 久久久久久电影| 国产在线乱码一区二区三区| 欧美一区二区私人影院日本| 亚洲成人动漫av| 欧洲精品一区二区| 亚洲美女视频在线| 一本高清dvd不卡在线观看| 中文字幕乱码一区二区免费| 国产精品 日产精品 欧美精品| 日韩亚洲欧美高清| 麻豆免费看一区二区三区| 欧美色电影在线| 亚洲一卡二卡三卡四卡五卡| 在线一区二区三区四区| 亚洲一区二区三区激情| 欧美在线观看一区二区| 亚洲香肠在线观看| 欧美日本一区二区三区四区| 五月婷婷激情综合| 91麻豆精品国产91久久久资源速度 | 国产一二精品视频| 一本到三区不卡视频| 亚洲欧美另类久久久精品| 91美女福利视频| 亚洲国产精品麻豆| 欧美日本韩国一区| 免费成人在线播放| 精品国产一二三| 粉嫩欧美一区二区三区高清影视| 国产精品全国免费观看高清| 99r国产精品| 午夜电影一区二区| 精品99一区二区| 风流少妇一区二区| 一区二区三区在线视频观看| 91精品国产一区二区三区蜜臀| 黑人精品欧美一区二区蜜桃| 国产精品久久久久影院亚瑟 | 久久久美女毛片| av男人天堂一区| 午夜精品久久久久久久99水蜜桃| 日韩欧美的一区二区| 成人免费va视频| 亚洲国产综合91精品麻豆| 欧美不卡一区二区三区四区| 国产aⅴ综合色| 亚洲国产欧美在线| 久久亚洲一区二区三区明星换脸| 91在线无精精品入口| 午夜精品爽啪视频| 国产欧美视频一区二区| 欧美性欧美巨大黑白大战| 韩国女主播一区二区三区| 综合av第一页| 欧美tickling网站挠脚心| 色婷婷综合久久| 极品美女销魂一区二区三区免费| 国产精品乱人伦| 日韩视频永久免费| 色域天天综合网| 国产高清不卡二三区| 偷拍自拍另类欧美| 国产精品初高中害羞小美女文| 欧美日韩一区三区四区| 国产69精品久久777的优势| 午夜精品一区二区三区电影天堂| 国产精品污www在线观看| 日韩欧美www| 欧美日韩免费一区二区三区 | 2021国产精品久久精品| 欧美日韩国产精品成人|